Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 23(1): 251, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932733

RESUMO

BACKGROUND: In the healthcare domain today, despite the substantial adoption of electronic health information systems, a significant proportion of medical reports still exist in paper-based formats. As a result, there is a significant demand for the digitization of information from these paper-based reports. However, the digitization of paper-based laboratory reports into a structured data format can be challenging due to their non-standard layouts, which includes various data types such as text, numeric values, reference ranges, and units. Therefore, it is crucial to develop a highly scalable and lightweight technique that can effectively identify and extract information from laboratory test reports and convert them into a structured data format for downstream tasks. METHODS: We developed an end-to-end Natural Language Processing (NLP)-based pipeline for extracting information from paper-based laboratory test reports. Our pipeline consists of two main modules: an optical character recognition (OCR) module and an information extraction (IE) module. The OCR module is applied to locate and identify text from scanned laboratory test reports using state-of-the-art OCR algorithms. The IE module is then used to extract meaningful information from the OCR results to form digitalized tables of the test reports. The IE module consists of five sub-modules, which are time detection, headline position, line normalization, Named Entity Recognition (NER) with a Conditional Random Fields (CRF)-based method, and step detection for multi-column. Finally, we evaluated the performance of the proposed pipeline on 153 laboratory test reports collected from Peking University First Hospital (PKU1). RESULTS: In the OCR module, we evaluate the accuracy of text detection and recognition results at three different levels and achieved an averaged accuracy of 0.93. In the IE module, we extracted four laboratory test entities, including test item name, test result, test unit, and reference value range. The overall F1 score is 0.86 on the 153 laboratory test reports collected from PKU1. With a single CPU, the average inference time of each report is only 0.78 s. CONCLUSION: In this study, we developed a practical lightweight pipeline to digitalize and extract information from paper-based laboratory test reports in diverse types and with different layouts that can be adopted in real clinical environments with the lowest possible computing resources requirements. The high evaluation performance on the real-world hospital dataset validated the feasibility of the proposed pipeline.


Assuntos
Algoritmos , Processamento de Linguagem Natural , Humanos , Armazenamento e Recuperação da Informação , Hospitais Universitários , Registros Eletrônicos de Saúde
2.
Diagnostics (Basel) ; 13(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37370891

RESUMO

BACKGROUND: Prostate cancer is a significant clinical issue, particularly for high Gleason score (GS) malignancy patients. Our study aimed to engineer and validate a risk model based on the profiles of high-GS PCa patients for early identification and the prediction of prognosis. METHODS: We conducted differential gene expression analysis on patient samples from The Cancer Genome Atlas (TCGA) and enriched our understanding of gene functions. Using the least absolute selection and shrinkage operator (LASSO) regression, we established a risk model and validated it using an independent dataset from the International Cancer Genome Consortium (ICGC). Clinical variables were incorporated into a nomogram to predict overall survival (OS), and machine learning was used to explore the risk factor characteristics' impact on PCa prognosis. Our prognostic model was confirmed using various databases, including single-cell RNA-sequencing datasets (scRNA-seq), the Cancer Cell Line Encyclopedia (CCLE), PCa cell lines, and tumor tissues. RESULTS: We identified 83 differentially expressed genes (DEGs). Furthermore, WASIR1, KRTAP5-1, TLX1, KIF4A, and IQGAP3 were determined to be significant risk factors for OS and progression-free survival (PFS). Based on these five risk factors, we developed a risk model and nomogram for predicting OS and PFS, with a C-index of 0.823 (95% CI, 0.766-0.881) and a 10-year area under the curve (AUC) value of 0.788 (95% CI, 0.633-0.943). Additionally, the 3-year AUC was 0.759 when validating using ICGC. KRTAP5-1 and WASIR1 were found to be the most influential prognosis factors when using the optimized machine learning model. Finally, the established model was interrelated with immune cell infiltration, and the signals were found to be differentially expressed in PCa cells when using scRNA-seq datasets and tissues. CONCLUSIONS: We engineered an original and novel prognostic model based on five gene signatures through TCGA and machine learning, providing new insights into the risk of scarification and survival prediction for PCa patients in clinical practice.

3.
Biomedicines ; 11(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37371723

RESUMO

Prostate cancer (PCa) is a critical global public health issue with its incidence on the rise. Radiation therapy holds a primary role in PCa treatment; however, radiation resistance has become increasingly challenging as we uncover more about PCa's pathogenesis. Our review aims to investigate the multifaceted mechanisms underlying radiation therapy resistance in PCa. Specifically, we will examine how various factors, such as cell cycle regulation, DNA damage repair, hypoxic conditions, oxidative stress, testosterone levels, epithelial-mesenchymal transition, and tumor stem cells, contribute to radiation therapy resistance. By exploring these mechanisms, we hope to offer new insights and directions towards overcoming the challenges of radiation therapy resistance in PCa. This can also provide a theoretical basis for the clinical application of novel ultra-high-dose-rate (FLASH) radiotherapy in the era of PCa.

4.
Front Oncol ; 12: 818953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439428

RESUMO

Purpose: It is difficult to contour nerve structures with the naked eye due to poor differentiation between the nerve structures with other soft tissues on CT images. Magnetic resonance neurography (MRN) has the advantage in nerve visualization. The purpose of this study is to identify one MRN sequence to better assist the delineation of the lumbosacral plexus (LSP) nerves to assess the radiation dose to the LSP using the magnetic resonance (MR)/CT deformable coregistration technique. Methods: A total of 18 cases of patients with prostate cancer and one volunteer with radiation-induced lumbosacral plexopathy (RILSP) were enrolled. The data of simulation CT images and original treatment plans were collected. Two MRN sequences (Lr_NerveVIEW sequence and Cs_NerveVIEW sequence) were optimized from a published MRN sequence (3D NerveVIEW sequence). The nerve visualization ability of the Lr_NerveVIEW sequence and the Cs_NerveVIEW sequence was evaluated via a four-point nerve visualization score (NVS) scale in the first 10 patients enrolled to determine the better MRN sequence for assisting nerve contouring. Deformable registration was applied to the selected MRN sequence and simulation CT images to get fused MR/CT images, on which the LSP was delineated. The contouring of the LSP did not alter treatment planning. The dosimetric data of the LSP nerve were collected from the dose-volume histogram in the original treatment plans. The data of the maximal dose (Dmax) and the location of the maximal radiation point received by the LSP structures were collected. Results: The Cs_NerveVIEW sequence gained lower NVS scores than the Lr_NerveVIEW sequence (Z=-2.887, p=0.004). The LSP structures were successfully created in 18 patients and one volunteer with MRN (Lr_NerveVIEW)/CT deformable registration techniques, and the LSP structures conformed with the anatomic distribution. In the patient cohort, the percentage of the LSP receiving doses exceeding 50, 55, and 60 Gy was 68% (12/18), 33% (6/18), and 17% (3/18), respectively. For the volunteer with RILSP, the maximum irradiation dose to his LSP nerves was 69 Gy. Conclusion: The Lr_NerveVIEW MRN sequence performed better than the Cs_NerveVIEW sequence in nerve visualization. The dose in the LSP needs to be measured to understand the potential impact on treatment-induced neuropathy.

5.
Front Oncol ; 12: 812031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847952

RESUMO

Purpose: To investigate the potential clinical benefit of utilizing intensity-modulated proton therapy (IMPT) to reduce acute hematologic toxicity for locally advanced non-small cell lung cancer (LA-NSCLC) patients and explore the feasibility of a model-based patient selection approach via the normal tissue complication probability (NTCP). Methods: Twenty patients with LA-NSCLC were retrospectively selected. Volumetric modulated arc photon therapy (VMAT) and IMPT plans were generated with a prescription dose of 60 Gy in 30 fractions. A wide range of cases with varied tumor size, location, stations of metastatic lymph nodes were selected to represent the general cancer group. Contouring and treatment planning followed RTOG-1308 protocol. Doses to thoracic vertebral bodies (TVB) and other organ at risks were compared. Risk of grade ≥ 3 acute hematologic toxicity (HT3+) were calculated based on the NTCP model, and patients with a reduction on NTCP of HT3+ from VMAT to IMPT (△NTCP_HT3+) ≥ 10% were considered to 'significantly benefit from proton therapy.' Results: Compared to VMAT, IMPT significantly reduced the dose to the TVB, the lung, the heart, the esophagus and the spinal cord. Tumor distance to TVB was significantly associated with △NTCP _HT3+ ≥ 10%. For the patients with tumor distance ≤ 0.7 cm to TVB, the absolute reduction of dose (mean, V30 and V40) to TVB was significantly lower than that in patients with tumor distance > 0.7 cm. Conclusion: IMPT decreased the probability of HT3+ compared to VMAT by reducing the dose to the TVB in LA-NSCLC patients. Patients with tumor distance to TVB less than 0.7 cm are likely to benefit most from proton over photon therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...